Bayesian separation of document images with hidden markov model
نویسندگان
چکیده
In this paper we consider the problem of separating noisy instantaneous linear mixtures of document images in the Bayesian framework. The source image is modeled hierarchically by a latent labeling process representing the common classifications of document objects among different color channels and the intensity process of pixels given the class labels. A Potts Markov random field is used to model regional regularity of the classification labels inside object regions. Local dependency between neighboring pixels can also be accounted by smoothness constraint on their intensities. Within the Bayesian approach, all unknowns including the source, the classification, the mixing coefficients and the distribution parameters of these variables are estimated from their posterior laws. The corresponding Bayesian computations are done by MCMC sampling algorithm. Results from experiments on synthetic and real image mixtures are presented to illustrate the performance of the proposed method.
منابع مشابه
مدل یابی انتشار بیماری های عفونی بر اساس رویکرد آماری بیز
Background and Aim: Health surveillance systems are now paying more attention to infectious diseases, largely because of emerging and re-emerging infections. The main objective of this research is presenting a statistical method for modeling infectious disease incidence based on the Bayesian approach.Material and Methods: Since infectious diseases have two phases, namely epidemic and non-epidem...
متن کاملHierarchical markovian models for joint classification, segmentation and data reduction of hyperspectral images
Spectral classification, segmentation and data reduction are the three main problems in hyperspectral image analysis. In this paper we propose a Bayesian estimation approach which tries to give a solution for these three problems jointly. The data reduction problem is modeled as a blind sources separation (BSS) where the data are the m hyperspectral images and the sources are the n < m images w...
متن کاملBayesian Segmentation of Hyperspectral Images
In this paper we consider the problem of joint segmentation of hyperspectral images in the Bayesian framework. The proposed approach is based on a Hidden Markov Modeling (HMM) of the images with common segmentation, or equivalently with common hidden classification label variables which is modeled by a Potts Markov Random Field. We introduce an appropriate Markov Chain Monte Carlo (MCMC) algori...
متن کاملFast joint separation and segmentation of mixed images
We consider the problem of the blind separation of noisy instantaneously mixed images. The images are modeled by hidden Markov fields with unknown parameters. Given the observed images, we give a Bayesian formulation and we propose a fast version of the MCMC algorithm based on the Bartlett decomposition for the resulting data augmentation problem. We separate the unknown variables into two cate...
متن کاملHierarchical Markovian Models for Hyperspectral Image Segmentation
Hyperspectral images can be represented either as a set of images or as a set of spectra. Spectral classification and segmentation and data reduction are the main problems in hyperspectral image analysis. In this paper we propose a Bayesian estimation approach with an appropriate hiearchical model with hidden markovian variables which gives the possibility to jointly do data reduction, spectral...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007